16. Genesis of Fourier analysis.

Now let us consider the wave equation

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<\pi, \quad t>0 \\
u(0, t)=u(\pi, t)=0 \\
u(x, 0)=f(x), \quad \frac{\partial}{\partial t} u(x, 0)=0
\end{array}\right.
$$

Recall that we have derived a solution

$$
U=\sum_{m=1}^{\infty} A_{m} \cos m t \sin m x
$$

to $E_{q}(1),(2),(3)$, provided that $\left(A_{m}\right)_{m=1}^{\infty}$ satisfies.

$$
\begin{equation*}
\sum_{m=1}^{\infty} A_{m} \sin (m x)=f(x) \tag{*}
\end{equation*}
$$

It now generates a natural question:
Q: For a reasonable function f on $[0, \pi]$,
Can we find coefficients Am such that (*) holds?

This is a fundamental question in Fourier analysis.
Suppose the answer is yes, then formally we have

$$
\begin{aligned}
\int_{0}^{\pi} f(x) \sin n x d x & =\int_{0}^{\pi}\left(\sum_{m=1}^{\infty} A_{m} \sin m x\right) \sin n x d x \\
& =\sum_{m=1}^{\infty} A_{m} \int_{0}^{\pi} \sin m x \sin n x d x \\
& =A_{n} \cdot \frac{\pi}{2}
\end{aligned}
$$

here we use the fact that

$$
\int_{0}^{\pi} \sin n x \sin m x d x= \begin{cases}\pi / 2 & \text { if } n=m \\ 0 & \text { otherwise }\end{cases}
$$

Hence

$$
A_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x, \quad n=1,2, \cdots
$$

Now we call

$$
\sum_{m=1}^{\infty} A_{n} \sin n x
$$

the Fourier sine series of f on $[0, \pi]$.
$1.7 \quad$ Fourier series

Suppose a "reasonable" function f on $[0, \pi]$ has a Foxier sine series. Then extend f to an odd function on $[-\pi, \pi], f$ still has the same sine series on $[-\pi, \pi]$.

We may believe that an even function g on $[-\pi, \pi]$ also has a cosine series

$$
g(x)=\sum_{m=0}^{\infty} B_{m} \cos m x
$$

(Formal argument : $\quad g^{\prime}$ is odd, so

$$
\begin{aligned}
g^{\prime}(x) & =\sum_{m=1}^{\infty} b_{m} \sin m x \\
\Rightarrow \quad g(x) & \left.=\int g^{\prime}(x) d x=\sum_{m=0}^{\infty} B_{m} \cos m x\right)
\end{aligned}
$$

Notice that every function F on $[-\pi, \pi]$ can be expressed as $f+g$, where f is odd and g is even. To see so, let $f(x)=\frac{F(x)-F(-x)}{2}, \quad g(x)=\frac{F(x)+F(-x)}{2}$.

Then we can express that

$$
\begin{aligned}
F(x) & =\sum_{m=0}^{\infty} a_{m} \cos (m x)+\sum_{m=1}^{\infty} f_{m} \sin (m x) \\
& =\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}
\end{aligned}
$$

(using Euler's identity $e^{i x}=\cos x+i \sin x$) from which $\cos x=\frac{e^{i x}+e^{-i x}}{2}, \quad \sin x=\frac{e^{i x}-e^{-i x}}{2 i}$

Using the fact $\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i m x} e^{-i n x} d x= \begin{cases}1 & \text { if } n=m \\ 0 & \text { otherwise, }\end{cases}$
we have

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x=C_{n}
$$

We call C_{n} the n-th Fourier coefficient of f on $E \pi \pi$] and $\sum_{-\infty}^{\infty} c_{n} e^{i n x}$ the Fomier series of f on $[-\pi, \pi]$.

